Distributed Utility Integration Test

Subcontract No. 30605 – 05

Presented by: Joe lannucci

Distributed Utility Associates

Principal Investigators: Joe Iannucci, Susan Horgan, Bill Erdman, Chuck Whitaker

NREL Technical Monitor: Ben Kroposki

Presented at U.S. Department of Energy Distributed Power Program Annual Review Meeting January 29-30, 2002 Arlington, VA

Project Description

- Design a test regimen to help understand the integration and interaction of multiple and diverse DER's in a utility distribution system
- Determine requirements for testing of distributed resources to support the development and implementation of the Distributed Power Program
- Determine site requirements
- Coordinate stakeholders site, testing and DER requirements
- Develop a detailed plan and site description/requirements for conducting integration testing

Distributed Utility Integration Test Partners

DUA
Endecon Engineering
PG&E
Exelon (PECO)
California Energy
Commission
Salt River Project
Texas PUC

Encorp
Caterpillar
Solar Turbines
Onsite Energy
SMUD
Niagara Mohawk

Distributed Utility Integration Test Tasks and Objectives

- Build a team
- Document appropriate technologies
- Review operating test sites and document features of appropriate site(s)
- Develop a project plan that would support the testing needs of the DOE Distributed Power Program

Task 1: DUIT Stakeholder Outreach and Consensus Building

- Distributed Utilities Associates and core project team, will determine role of the host utility
- Seek cofunding and support from other research and development organizations
- Select candidate technologies

Deliverable: Develop Integration Test Concept
Paper include consensus objectives, goals and
stakeholder perspectives

Task 2: Technology Evaluation, Selection and Availability

- Rotating DR
 - Synchronous MG-sets
 - Induction Generator Systems
- ∠ Inverter Based DR
 - Fuel Cell
 - Photovoltaic
 - Microturbine
- Storage Technologies
 - Flywheel
 - SMES
 - Batteries
- Deliverable: Technology Selection Report

Inverter Supplier Table (Partial)

Supplier	Electrical Rating	Physical Size	Weight	Venting Requireme nts	Fuel Requirements	Indoor/Outdoor Rating	Ambient Temperature
Advanced Energy Systems	1KVA	19"Hx8"Wx6.5"D	43 Lbs.	None	None	Full outdoor	-40Deg. C 60Deg.C
Aerovironment Xantrrex/Trace Eng. Model ST	1 - 2.5	33.5"Hx13.25" Wx 5.3"D	35 Lbs.	None	None	Indoor, outdoor with optional rain shield	-39Deg. C 45Deg. C
Xantrex/Trace Tech. Model PV 10	10KVA	26"Hx18"Wx10"D	75 Lbs.	None	None	NEMA 4 outdoor rating	-20Deg.C 50Deg.C
Xantrex/Trace Tech Model PV 15, 20	15 – 20 KVA	30"Hx25"Wx13"D	175 Lbs.	None	None	NEMA 4 outdoor rating	-20Deg. C 50Deg. C
S&C Omnion Model 2400	2.2 – 6 KVA	28"Hx18"Wx8"D	74 Lbs.	None	None	NEMA 3R outdoor rating	-20Deg. C 40 Deg.C (45 for some products)
S&C Omnion Model 2500	1- 2 KVA	21.75"Hx12"Wx7. 25"D	1KVA – 35 Lbs. 2KVA – 40 Lbs.	None	None	NEMA 3R IP 32	-25 Deg. C 50 Deg. C
S&C Omnion	50 – 100KVA	75"Hx76"Wx38"D	50KVA – 2000 Lbs. 100KVA – 2200Lbs.	None	None	NEMA 3R	-30 Deg. C 50 Deg.C
Vanner Model RE24- 4500DGT	4.5KVA	29"Hx20.5"Wx9.2 5"D	95 Lbs.	None	None	N.A.	4.5KVA@ 25Deg.C

Task 3: DUIT Site Assessment

- Evaluate potential test locations
 - recommend site (or combination of sites) for operation and testing of distributed generation technologies by the DUIT project

Sites Evaluated

Detailed facility information was obtained from the following locations for evaluation as DUIT testing sites:

- ∠ Dolan Test Center Groveport, OH
- ∠ Modular Generation Test Facility (MGTF) San Ramon, CA
- ∠ National Renewable Energy Laboratories (NREL) Golden, CO
- ∠ Oak Ridge National Laboratory Oak Ridge, TN
- ∠ Pacific Northwest National Laboratories (PNNL) Hanford, WA
- ∠ Power Electronics Applications Center (PEAC) Knoxville, TN
- Sandia National Laboratories Albuquerque, NM
- ∠ Southwest Research Institute (SWRI) San Antonio, TX
- ∠ University of California at Irvine − Irvine, CA
- University of Wisconsin Madison, WI

Site Assessment Criteria

- Available space number of test cells or bays, their sizes, and limitations
- MW Rating largest single DR allowable; total allowed DG for facility
- Existing/permanent DRs on-site potential for reducing acquisition costs of new equipment
- Existing testing equipment controls, monitoring and instrumentation, switching load banks, etc.
- Host utility's level of interest, support and involvement, both financial and in terms of personnel time and expertise
- Ability to test in both radial and network circuit configurations
- **∠** Grid supply voltage, MVA, switching arrangements, and limitations
- Fuel supply and storage natural gas line size, pressure and flow rate (BTU/hr); diesel, hydrogen, gasoline, LPG availability and/or storage capability

Site Assessment Criteria

- Flexibility of facility to evolve or adapt to future/unforeseen testing needs
- **∠** Limitations noise, emissions, other
- Ability to test multiple DRs at once, in interactive modes
- Number and expertise of testing staff
- Testing history/experience relevant to DUIT
- Costs for required facility upgrades to accommodate DUIT testing, as well as for the testing itself. Factors to consider:
 - cost of DR technologies (purchase, rental, lease, O&M, fuel, etc.)
 - number of DR installations and removals
 - duration of tests
 - fuel costs
 - analysis and reporting requirements
 - requirements of host utility (meetings, trips, etc.)
 - special installation equipment required
 - control equipment for multiple DRs

Task 4: DUIT Project Plan

DUIT Plan:

- Technology
- Site specification
- DAS requirements
- Costs and schedule

Test Plan: Issues for All Tests

- High vs Low DR penetration levels
- Legacy vs future distribution systems
- DR as a nuisance vs DR as a resource
- Export vs non-export
- Interaction between different distributed resources
- Distributed resource types
 - Rotating: synchronous and induction
 - Inverter-based
- Control aggregation
- Scalability
- Single vs 3 phase
 - DR, faults and other events
- Abnormal conditions

Test Plan Development

- Reviewed numerous documents related to DR:
 - IEEE P1547, IEEE 929, UL 1741
 - EEI DR Task Force Interconnection Study (29 Issues)
 - California, New York, Texas, and other existing interconnection rules
- Discussed issues within the DUIT team and with many other utility engineers and equipment providers
- Developed a series of test protocols

Major Test Plan Categories

- Z Test Protocols address:
 - Anti Islanding
 - Voltage Regulation
 - Sectionalizing Devices
 - Reclosing
 - Synchronization
 - Short Circuit Current
 - Stability
 - Fuse Coordination

Test Protocols - Review

- Test Protocol document was sent to key utilities, manufacturers and other stakeholders for review. Asked reviewers to:
 - Provide feedback on content
 - Identify missing tests or issues
 - Prioritize tests
- 15 divers respondents
- Received minimal ideas for test variations
- Prioritization was inconsistent
 - Two issues seem to be of universal concern:
 - Islanding
 - Voltage Regulation

DUIT Summary

- Completed technology evaluation
- Completed review of facilities that could be considered for conducting testing
- Designed and Peer reviewed testing protocols that could be implemented at a DUIT site
- DUIT draft final Test Plan completed. This work supports DOE DPP testing goals.